THE INFLUENCE OF SUBJECT CHARACTERISTICS AND JOINT KINEMATICS ON FUNCTION AND QUALITY OF LIFE IN PATIENTS WITH OSTEOARTHRITIS PRIOR TO TOTAL KNEE REPLACEMENT

1 Marietta van der Linden, 1Phil Rowe, 2Paul Gaston 2Richard Nutton
1Queen Margaret University College 2Royal Infirmary Edinburgh
email: mvanderlinden@qmuc.ac.uk

INTRODUCTION
Osteoarthritis (OA) is associated with increased age, with pain and with functional limitation in joints. The rising proportion of elderly in our society means that optimal management of pain and functional loss in OA is of increasing importance. In this study the role of pre-operative patient characteristics such as passive knee flexion and muscle strength on knee motion during functional activities and common outcome measures of function were explored. Secondly, relationships between functional knee motion and quality of life measures and daily activity were investigated.

METHODS
Thirty patients with osteoarthritis were assessed an average of 6 weeks before surgery. Forty age-matched controls were also included in this study. Knee angle was measured using an electrogoniometer during level, stair and slope walking, getting in and out of a chair and getting in and out of a bath. Maximum passive knee flexion was measured in sitting with a manual goniometer. Muscle strength was measured using the MIE Myometer [1] and was normalized for body mass. Other outcome measures included the American Knee Society Score (AKS), the Western Ontario & McMaster University Osteoarthritis Index (WOMAC) and a quality of life questionnaire, the SF36. The patient’s daily physical activity was recorded using an activity monitor (ActivPAL [2]). This monitor records the time spent lying/sitting, standing and stepping. In addition it will display the number of steps made.

RESULTS AND DISCUSSION
Table 1 summarizes the most important patient characteristics. Except age and the SF36 mental score, all characteristics were significantly different between the most affected leg of the patients and the age matched controls (p<0.01). Knee flexion during all functional activities was significantly less (p<0.01) in the patient group. Further, the affected leg of the patients showed significantly less knee flexion than their contralateral leg in all functional activities except sitting and had significantly weaker knee extensor and flexor strength (p<0.01). Knee flexion strength of the affected leg was relatively less reduced (42%) compared the normal group than knee extensor strength (52%) which corresponds to the findings by Hortobagyi [3].

Percentage of patients with significant different p<0.01 between the patients (affected leg) and control group

<table>
<thead>
<tr>
<th>Knee</th>
<th>Age (yrs)</th>
<th>BMI</th>
<th>Passive flexion °</th>
<th>Extensor strength (N/kg)</th>
<th>Flexor strength (N/kg)</th>
<th>Steps (nr)</th>
<th>Walking speed (m/s)</th>
<th>SF36 Physical</th>
<th>SF36 Mental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affected</td>
<td>68.4(10.1)</td>
<td>30.0 (5.6)</td>
<td>102(16)</td>
<td>1.49(0.88)</td>
<td>0.96(0.46)</td>
<td>7569(3961)</td>
<td>0.90(0.88)</td>
<td>36.7(4.35)</td>
<td>54.0(9.9)</td>
</tr>
<tr>
<td>Contralateral</td>
<td>69.6(6.1)</td>
<td>24.9 (3.4)*</td>
<td>134(7)*</td>
<td>3.11(1.1)*</td>
<td>1.64(0.47)*</td>
<td>13203(5120)*</td>
<td>1.24(0.10)*</td>
<td>54.5(6.08)*</td>
<td>56.1(4.9)</td>
</tr>
</tbody>
</table>

*significant different p<0.01 between the patients (affected leg) and control group

BMI: Body Mass Index

CONCLUSIONS
This study shows that a score derived from the knee motion during functional tasks as measured by an electrogoniometer is associated with traditional outcome measures of function such as the WOMAC and the AKS. However, this score derived from electrogoniometry is more objective and sensitive than the traditional questionnaire based outcome measures of function and may therefore be more appropriate for the assessment of outcome after knee replacement surgery.

REFERENCES

ACKNOWLEDGEMENTS
This study was funded by a grant from Zimmer Inc.

Table 1 Average (std) subject characteristics

<table>
<thead>
<tr>
<th>Knee</th>
<th>Age (yrs)</th>
<th>BMI</th>
<th>Passive flexion °</th>
<th>Extensor strength (N/kg)</th>
<th>Flexor strength (N/kg)</th>
<th>Steps (nr)</th>
<th>Walking speed (m/s)</th>
<th>SF36 Physical</th>
<th>SF36 Mental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affected</td>
<td>68.4(10.1)</td>
<td>30.0 (5.6)</td>
<td>102(16)</td>
<td>1.49(0.88)</td>
<td>0.96(0.46)</td>
<td>7569(3961)</td>
<td>0.90(0.88)</td>
<td>36.7(4.35)</td>
<td>54.0(9.9)</td>
</tr>
<tr>
<td>Contralateral</td>
<td>69.6(6.1)</td>
<td>24.9 (3.4)*</td>
<td>134(7)*</td>
<td>3.11(1.1)*</td>
<td>1.64(0.47)*</td>
<td>13203(5120)*</td>
<td>1.24(0.10)*</td>
<td>54.5(6.08)*</td>
<td>56.1(4.9)</td>
</tr>
</tbody>
</table>