IN VIVO SARCOMERE LENGTH MEASUREMENT BY MINIMALLY INVASIVE MICROENDOSCOPY

Michael E. Llewellyn¹, Robert P. J. Barretto², Mark J. Schnitzer²,³, and Scott L. Delp¹,⁴,⁵

Departments of Bioengineering¹, Biological Sciences², Applied Physics³, Mechanical Engineering⁴, and Orthopaedic Surgery⁵. Stanford University.
Email: llewellm@stanford.edu Web: http://nmbl.stanford.edu/

INTRODUCTION

Knowledge of muscle sarcomere lengths is needed to understand of muscle physiology and disease. Unfortunately, individual human sarcomere lengths have never been measured in vivo due their small size (1-4 µm), which is not resolvable with current clinical imaging modalities. We have developed a minimally invasive method capable of imaging individual sarcomeres deep within the muscle of living animals without the use of exogenous dyes. We have used this technique to visualize individual sarcomeres and muscle fibers of mice. Our technique is also applicable to humans, and opens the door to clinical measurement of individual sarcomere lengths.

METHODS

Muscle produces a nonlinear optical signal during a process called Second-Harmonic Generation (SHG), which is thought to originate from the tail region of myosin heavy chain (Plotnikov et al., 2006). We generated a SHG signal in the muscle of anesthetized C57BL/6 mice (Figure 1A and 1B) using a Gradient Refractive Index (GRIN) microendoscope (Jung et al., 2003). For this study, we used microendoscopes whose diameters ranged from 1000 µm to 350 µm (Figure 1C). These microendoscopes produced acceptable fields of view and allowed us to reach depths of several centimeters within the tissue. We imaged both muscle in its passive state and when activated through stimulation of the tibial nerve. We measured average sarcomere lengths by fitting a sine wave to the autocorrelation function of an image.

Figure 1: GRIN microendoscope used to conduct sarcomere imaging. An infrared pulsed laser is focused by a GRIN microendoscope to excite deep tissue. The same microendoscope collects the emitted SHG signal, which is reflected off a wavelength-specific dichroic mirror through a filter and into a photomultiplier tube (PMT) detector (A). A stainless-steel clad 350 µm microendoscope is inserted in the lateral gastrocnemius of a living mouse (B). The three sizes of microendoscopes (1000 µm, 500 µm, 350 µm diameter.) shown near a coin for scale (C).
RESULTS AND DISCUSSION

We have demonstrated the feasibility of minimally invasive SHG microendoscopy to measure individual sarcomere lengths in vivo without the use of exogenous dyes (Figure 2A and 2B). We were able to measure sarcomere lengths from deep within both passive and active muscle tissue. We measured passive sarcomere length vs. ankle angle (Figure 2C) that is consistent with previous studies (Goulding et al., 1997) and estimates based on measured architectural data such as pennation angle, moment arm, and fiber lengths. Additionally, we were able to create high-resolution 3D models of sarcomeres in vivo due to the intrinsic sectioning capabilities of multiphoton microscopy (Figure 2D).

For the first time, there is an imaging modality capable of measuring individual sarcomere lengths in vivo with minimal invasiveness, opening the door for researchers to address fundamental questions about muscle physiology. Additionally, because this imaging modality is adaptable to humans, we are looking forward to its use in clinical imaging.

REFERENCES

Plotnikov, S. V., A. C. Millard, P. J. Campagnola et al., *Biophysical journal* 90 (2), 693 (2006);

ACKNOWLEDGEMENTS

We would like to thank the NIH and the Stanford BioX program for support.