INFLUENCE OF WHEELCHAIR SUSPENSION ON SEAT FORCES AND HEAD ACCELERATIONS DURING CURB DESCENT LANDINGS

Philip S. Requejo1, Jill McNitt-Gray2, Henryk Flashner3

1Rehabilitation Engineering Program, Rancho Los Amigos National Rehabilitation Center, Downey, California, USA, prequejo@larei.org
2Biomechanics Research Laboratory, Departments of Kinesiology and Biomedical Engineering, University of Southern California, Los Angeles, California, USA, mcnitt@usc.edu
3Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California, USA, hflashne@usc.edu

URL: http://www.ranchorep.org

INTRODUCTION

For many persons with a spinal cord injury (SCI), a common method of mobility is a wheelchair. Shocks experienced during manual wheelchair use can decrease an individual’s comfort, increase the rate of fatigue, result in injury, and consequently limit mobility and community participation1. The objective of this study was to determine the forces transmitted from the seat and accelerations experienced by wheelchair riders during independent curb descents on a rigid and 3 rear suspension type wheelchair frames. We hypothesized that rear suspension wheelchairs will significantly reduce the seat forces and head accelerations compared to non-suspension wheelchairs.

METHODS AND PROCEDURES

Eight men with paraplegia (T12; ASIA-A) performed an independently-controlled curb descent manoeuvres in four different wheelchairs: a rigid frame wheelchair (Quickie GPV) and three rear-wheel suspension wheelchairs (Invacare A4, Colours Boing, Quickie XTR). Subjects performed the curb descents from a 4 inch height, 5 times in each wheelchair. Load cells mounted on each seat frame measured the 3D seat reaction forces and accelerometers attached to a helmet measured the subjects head accelerations2. Resultant seat forces at initial contact normalized to body weight (BW), change in resultant seat force from initial contact to peak force, rise time (initial contact to peak force); and peak vertical, forward (positive) and backward (negative) head accelerations were compared between wheelchairs.

RESULTS

Change in seat resultant force was lower in the suspension frames (XTR=1.51 ± 0.64 BW, A4=1.69 ± 0.48 BW, Boing= 1.87 ± 0.52 BW) compared to the rigid frame wheelchair (GPV=2.03 ± 0.35 BW). Rise time was shorter in the rigid frame (GPV = 59 ± 14 ms) compared to suspension frame wheelchairs (A4=68 ± 14ms, Boing = 90 ± 7 ms, XTR=103 ± 11 ms). Peak vertical head acceleration was lower in the suspension frames (XTR=1.33 ± 0.29 g, A4=1.51 ± 0.41g, Boing = 1.57 ± 0.37g) compared to the rigid frame wheelchair (GPV=1.69 ± 0.44g). Peak forward head acceleration was lower in the suspension frames (XTR=1.08 ± 0.51 g, Boing=1.46 ± 0.82g, A4= 1.47 ± 0.60g) compared to the rigid frame wheelchair (GPV=1.95 ± 0.80 g). Peak backward head
acceleration was reduced in the suspension frames (XTR = -0.23 ± 0.43 g, Boing = -0.65 ± 0.51 g, A4 = -0.96 ± 0.53 g) compared to the rigid frame wheelchair (GPV = -1.10 ± 0.41 g). Resultant seat force at initial contact was inversely related to change in seat force (Figure 1), peak vertical head acceleration, and peak backward head acceleration (Figure 2); indicating that wheelchair riders can reduce the reaction forces and head accelerations by increasing the seat reaction force prior to initial ground contact.

DISCUSSION
Rear wheel suspension systems can reduce the forces transmitted from the wheelchair to the user by extending the peak force rise time. This resulted in decreased head acceleration for the wheelchair riders. Among the suspension frame wheelchairs, the Quickie XTR demonstrated the greatest attenuation of forces and reduction in head accelerations. However, wheelchair riders can also control the magnitude of the seat reaction forces and head accelerations during curb descent landings by controlling the velocity at contact as indicated by the magnitude of seat force.

SUMMARY
Rear suspension is effective in absorbing shocks and vibration during wheelchair use. However, the suppression performance varies as a function of rear suspension configuration and landing strategies at contact.

REFERENCES

ACKNOWLEDGEMENTS
Funded by the National Institute of Disability and Rehabilitation Research Grant # H133E020732. Special thanks to Somboon Maneekobkunwong M.S. for assistance with the instrumentations and data collections. Test wheelchairs provided by Sunrise Medical Inc., Colours Inc., and Invacare Inc.